Veintiún problemas NP-completos de Karp
En teoría de complejidad computacional, los veintiún (21) problemas NP-completos de Karp son un conjunto de problemas computacionales famosos, que tratan sobre combinatoria y teoría de grafos y que cumplen la característica en común de que todos ellos pertenecen a la clase de complejidad de los NP-completos. La demostración fue elaborada en 1972 por el informático teórico Richard Karp, en su trabajo seminal "Reducibility Among Combinatorial Problems" (Reducibilidad entre Problemas Combinatorios), como profundización del trabajo de Stephen Cook, quien en 1971 había demostrado uno de los resultados más importantes y pioneros de la complejidad computacional: la NP-completitud del problema de satisfacibilidad booleana.